

- Short Class Outline
 - History and Definitions
 - Usage Applications
 - Fast Fourier Transform (FFT)
 - Amateur Radio Usage
 - Hardware Notes
 - Interesting Software
 - Questions

KSØJ

- History & Definitions
 - Rather Old Mathematics
 - Change Domains (t to f)
 - Inverse Transform (f to t)
 - Periodic Waveforms
 - Usually an Integral or Series

History

- Joseph Fourier (1769-1830)
- Great Mathematical Insight
- Contributions by Poisson,
 Laplace & Gauss (1805)

Joseph Fourier (1769-1830)

Definitions

 Fourier Transform is a mathematical method to convert a time domain function to an identical frequency domain function.

FOURIER TRANSFORM

The General Equation

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{i\omega t} d\omega$$

HAIR RAISING

The General Equation Mathematicians are famous for trying to get the most bang for the least amount of symbols.

The Fourier equation is an Integral Transform - One of Many Similar Look on the Web

RER

FOURIER TRANSFORM

The General Equation Good Example is Maxwell's Equations

KSØJ

AKA Fourier Series

An Infinite Series Truncated to Desired Accuracy. Usually 10 Terms Results In a Good Approximation.

Change Signal Domains

- Periodic Waveforms
- Non-periodic Waveforms
- Before Computers, This was a Very Laborious Process.

Some Classic Examples

- Square Wave
- Triangle Wave
- Saw Tooth Wave
- Not Very Useful For Irregular Waveforms

- Enter the Computer
 - The FFT Process
 - Reinvented DFT by Cooley-Tukey for DSP (1965)
 - Algorithms Using "Filters"
 - The power of the DSP
 - The Power of the Sound Card

Time vs Frequency Domains

Time vs Frequency Domains

- Amateur Radio Usage
 Receiver Signal Processing
 Modulation Processing
 Digital Encoding (Fldigi)
 - Transmitting Audio Effects

Receiver DSP

- Noise Reduction
- Noise Blankers (Clicks)
- Pass-band Adjustments
- Audio Equalizing
- Notch Filters (Hum or QRM)

Hardware

- DSP Chip Sound Card
- DSP Chip Receiver
- Basically Very Fast Filters
- Do Things in The "f" domain

- Software Notes
 - Algorithms in Sound Cards
 - Generation of Encryption
 - Special Effects (Audacity)
 - Transmitting Audio EffectsBroke the Baud Rules

- Software Notes
 - Some Common Algorithms
 - DFT (Discrete FT)
 - Split Radix Algorithm
 - New Work Still Underway

Program Sources & Credits

Material used with permission of "Better Explained". Go to <u>www.betterexplained.com</u>.

 Material is open and free to use or modify with proper Attribution. I have copy of license for reference.
 Author is Kalid Azad.

- Wonderful Software
 - "Audacity" Free Software
 - Educational & Entertaining
 - Sound Card Understanding
 - Sound Track Manipulation
 - Demonstrate FFT Apps